Using the Product to Sum Formula Calculate Sin(45°)Sin(30°)
Use a trig identity:
Sin(u)Sin(v) =
Cos(u - v) - Cos(u + v)
2
In this case, u = 45 and v = 30
Sin(45)Sin(30) =
Cos(45 - 30) - Cos(45 + 30)
2
Sin(45)Sin(30) =
Cos(15) - Cos(75)
2
Sin(45)Sin(30) =
0.96592582636649 - 0.2588190465473
2
Sin(45)Sin(30) =
0.70710677981919
2
Sin(45)Sin(30) = 0.3535533899096
You have 2 free calculationss remaining
What is the Answer?
Sin(45)Sin(30) = 0.3535533899096
How does the Sum to Product and Product to Sum Formulas Calculator work?
Free Sum to Product and Product to Sum Formulas Calculator - Given two angles in degrees of u and v, this determines the following:
* Sin(u) ± Sin(v)
* Cos(u) ± Cos(v)
* Sin(u)Sin(v)
* Cos(u)Cos(v)
* Sin(u)Cos(v)
* Cos(u)Sin(v)
* Sin(u + v)
* Sin(u - v)
* Cos(u + v)
* Cos(u - v)
* Tan(u + v)
* Tan(u - v) This calculator has 1 input.
What 9 formulas are used for the Sum to Product and Product to Sum Formulas Calculator?