Show the Lagrange Four Square Theorem for
454
For any natural number (p), we write as
p = a2 + b2 + c2 + d2
Floor(√454) = Floor(21.307275752663)
Floor(21.307275752663) = 21
This is called max_a
Find the first value of a such that
a2 ≥ n/4
Start with min_a = 1 and increase by 1
Continue until we reach or breach n/4 → 454/4 = 113.5
When min_a = 11, then it is a2 = 121 ≥ 113.5, so min_a = 11
(11, 21)
Find max_b which is Floor(√n - a2)
max_b = Floor(√454 - 112)
max_b = Floor(√454 - 121)
max_b = Floor(√333)
max_b = Floor(18.248287590895)
max_b = 18
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (454 - 112)/3 = 111
When min_b = 11, then it is b2 = 121 ≥ 111, so min_b = 11
(11, 18)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 112 - 112)
max_c = Floor(√454 - 121 - 121)
max_c = Floor(√212)
max_c = Floor(14.560219778561)
max_c = 14
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 112 - 112)/2 = 106
When min_c = 11, then it is c2 = 121 ≥ 106, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 112 - 112
max_d = √454 - 121 - 121 - 121
max_d = √91
max_d = 9.5393920141695
Since max_d = 9.5393920141695 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 112 - 122
max_d = √454 - 121 - 121 - 144
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 112 - 132
max_d = √454 - 121 - 121 - 169
max_d = √43
max_d = 6.557438524302
Since max_d = 6.557438524302 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 112 - 142
max_d = √454 - 121 - 121 - 196
max_d = √16
max_d = 4
Since max_d = 4, then (a, b, c, d) = (11, 11, 14, 4) is an integer solution proven below
112 + 112 + 142 + 42 → 121 + 121 + 196 + 16 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 112 - 122)
max_c = Floor(√454 - 121 - 144)
max_c = Floor(√189)
max_c = Floor(13.747727084868)
max_c = 13
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 112 - 122)/2 = 94.5
When min_c = 10, then it is c2 = 100 ≥ 94.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 122 - 102
max_d = √454 - 121 - 144 - 100
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 122 - 112
max_d = √454 - 121 - 144 - 121
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 122 - 122
max_d = √454 - 121 - 144 - 144
max_d = √45
max_d = 6.7082039324994
Since max_d = 6.7082039324994 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 122 - 132
max_d = √454 - 121 - 144 - 169
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 112 - 132)
max_c = Floor(√454 - 121 - 169)
max_c = Floor(√164)
max_c = Floor(12.806248474866)
max_c = 12
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 112 - 132)/2 = 82
When min_c = 10, then it is c2 = 100 ≥ 82, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 132 - 102
max_d = √454 - 121 - 169 - 100
max_d = √64
max_d = 8
Since max_d = 8, then (a, b, c, d) = (11, 13, 10, 8) is an integer solution proven below
112 + 132 + 102 + 82 → 121 + 169 + 100 + 64 = 454
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 132 - 112
max_d = √454 - 121 - 169 - 121
max_d = √43
max_d = 6.557438524302
Since max_d = 6.557438524302 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 132 - 122
max_d = √454 - 121 - 169 - 144
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 112 - 142)
max_c = Floor(√454 - 121 - 196)
max_c = Floor(√137)
max_c = Floor(11.70469991072)
max_c = 11
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 112 - 142)/2 = 68.5
When min_c = 9, then it is c2 = 81 ≥ 68.5, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 142 - 92
max_d = √454 - 121 - 196 - 81
max_d = √56
max_d = 7.4833147735479
Since max_d = 7.4833147735479 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 142 - 102
max_d = √454 - 121 - 196 - 100
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 142 - 112
max_d = √454 - 121 - 196 - 121
max_d = √16
max_d = 4
Since max_d = 4, then (a, b, c, d) = (11, 14, 11, 4) is an integer solution proven below
112 + 142 + 112 + 42 → 121 + 196 + 121 + 16 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 112 - 152)
max_c = Floor(√454 - 121 - 225)
max_c = Floor(√108)
max_c = Floor(10.392304845413)
max_c = 10
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 112 - 152)/2 = 54
When min_c = 8, then it is c2 = 64 ≥ 54, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 152 - 82
max_d = √454 - 121 - 225 - 64
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 152 - 92
max_d = √454 - 121 - 225 - 81
max_d = √27
max_d = 5.1961524227066
Since max_d = 5.1961524227066 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 152 - 102
max_d = √454 - 121 - 225 - 100
max_d = √8
max_d = 2.8284271247462
Since max_d = 2.8284271247462 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 112 - 162)
max_c = Floor(√454 - 121 - 256)
max_c = Floor(√77)
max_c = Floor(8.7749643873921)
max_c = 8
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 112 - 162)/2 = 38.5
When min_c = 7, then it is c2 = 49 ≥ 38.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 162 - 72
max_d = √454 - 121 - 256 - 49
max_d = √28
max_d = 5.2915026221292
Since max_d = 5.2915026221292 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 162 - 82
max_d = √454 - 121 - 256 - 64
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 112 - 172)
max_c = Floor(√454 - 121 - 289)
max_c = Floor(√44)
max_c = Floor(6.6332495807108)
max_c = 6
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 112 - 172)/2 = 22
When min_c = 5, then it is c2 = 25 ≥ 22, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 172 - 52
max_d = √454 - 121 - 289 - 25
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 172 - 62
max_d = √454 - 121 - 289 - 36
max_d = √8
max_d = 2.8284271247462
Since max_d = 2.8284271247462 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 112 - 182)
max_c = Floor(√454 - 121 - 324)
max_c = Floor(√9)
max_c = Floor(3)
max_c = 3
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 112 - 182)/2 = 4.5
When min_c = 3, then it is c2 = 9 ≥ 4.5, so min_c = 3
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 112 - 182 - 32
max_d = √454 - 121 - 324 - 9
max_d = √0
max_d = 0
Since max_d = 0, then (a, b, c, d) = (11, 18, 3, 0) is an integer solution proven below
112 + 182 + 32 + 02 → 121 + 324 + 9 + 0 = 454
Find max_b which is Floor(√n - a2)
max_b = Floor(√454 - 122)
max_b = Floor(√454 - 144)
max_b = Floor(√310)
max_b = Floor(17.606816861659)
max_b = 17
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (454 - 122)/3 = 103.33333333333
When min_b = 11, then it is b2 = 121 ≥ 103.33333333333, so min_b = 11
(11, 17)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 122 - 112)
max_c = Floor(√454 - 144 - 121)
max_c = Floor(√189)
max_c = Floor(13.747727084868)
max_c = 13
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 122 - 112)/2 = 94.5
When min_c = 10, then it is c2 = 100 ≥ 94.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 112 - 102
max_d = √454 - 144 - 121 - 100
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 112 - 112
max_d = √454 - 144 - 121 - 121
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 112 - 122
max_d = √454 - 144 - 121 - 144
max_d = √45
max_d = 6.7082039324994
Since max_d = 6.7082039324994 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 112 - 132
max_d = √454 - 144 - 121 - 169
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 122 - 122)
max_c = Floor(√454 - 144 - 144)
max_c = Floor(√166)
max_c = Floor(12.884098726725)
max_c = 12
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 122 - 122)/2 = 83
When min_c = 10, then it is c2 = 100 ≥ 83, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 122 - 102
max_d = √454 - 144 - 144 - 100
max_d = √66
max_d = 8.124038404636
Since max_d = 8.124038404636 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 122 - 112
max_d = √454 - 144 - 144 - 121
max_d = √45
max_d = 6.7082039324994
Since max_d = 6.7082039324994 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 122 - 122
max_d = √454 - 144 - 144 - 144
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 122 - 132)
max_c = Floor(√454 - 144 - 169)
max_c = Floor(√141)
max_c = Floor(11.874342087038)
max_c = 11
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 122 - 132)/2 = 70.5
When min_c = 9, then it is c2 = 81 ≥ 70.5, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 132 - 92
max_d = √454 - 144 - 169 - 81
max_d = √60
max_d = 7.7459666924148
Since max_d = 7.7459666924148 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 132 - 102
max_d = √454 - 144 - 169 - 100
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 132 - 112
max_d = √454 - 144 - 169 - 121
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 122 - 142)
max_c = Floor(√454 - 144 - 196)
max_c = Floor(√114)
max_c = Floor(10.677078252031)
max_c = 10
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 122 - 142)/2 = 57
When min_c = 8, then it is c2 = 64 ≥ 57, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 142 - 82
max_d = √454 - 144 - 196 - 64
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 142 - 92
max_d = √454 - 144 - 196 - 81
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 142 - 102
max_d = √454 - 144 - 196 - 100
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 122 - 152)
max_c = Floor(√454 - 144 - 225)
max_c = Floor(√85)
max_c = Floor(9.2195444572929)
max_c = 9
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 122 - 152)/2 = 42.5
When min_c = 7, then it is c2 = 49 ≥ 42.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 152 - 72
max_d = √454 - 144 - 225 - 49
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (12, 15, 7, 6) is an integer solution proven below
122 + 152 + 72 + 62 → 144 + 225 + 49 + 36 = 454
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 152 - 82
max_d = √454 - 144 - 225 - 64
max_d = √21
max_d = 4.5825756949558
Since max_d = 4.5825756949558 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 152 - 92
max_d = √454 - 144 - 225 - 81
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (12, 15, 9, 2) is an integer solution proven below
122 + 152 + 92 + 22 → 144 + 225 + 81 + 4 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 122 - 162)
max_c = Floor(√454 - 144 - 256)
max_c = Floor(√54)
max_c = Floor(7.3484692283495)
max_c = 7
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 122 - 162)/2 = 27
When min_c = 6, then it is c2 = 36 ≥ 27, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 162 - 62
max_d = √454 - 144 - 256 - 36
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 162 - 72
max_d = √454 - 144 - 256 - 49
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 122 - 172)
max_c = Floor(√454 - 144 - 289)
max_c = Floor(√21)
max_c = Floor(4.5825756949558)
max_c = 4
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 122 - 172)/2 = 10.5
When min_c = 4, then it is c2 = 16 ≥ 10.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 122 - 172 - 42
max_d = √454 - 144 - 289 - 16
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√454 - 132)
max_b = Floor(√454 - 169)
max_b = Floor(√285)
max_b = Floor(16.881943016134)
max_b = 16
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (454 - 132)/3 = 95
When min_b = 10, then it is b2 = 100 ≥ 95, so min_b = 10
(10, 16)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 132 - 102)
max_c = Floor(√454 - 169 - 100)
max_c = Floor(√185)
max_c = Floor(13.601470508735)
max_c = 13
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 132 - 102)/2 = 92.5
When min_c = 10, then it is c2 = 100 ≥ 92.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 102 - 102
max_d = √454 - 169 - 100 - 100
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 102 - 112
max_d = √454 - 169 - 100 - 121
max_d = √64
max_d = 8
Since max_d = 8, then (a, b, c, d) = (13, 10, 11, 8) is an integer solution proven below
132 + 102 + 112 + 82 → 169 + 100 + 121 + 64 = 454
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 102 - 122
max_d = √454 - 169 - 100 - 144
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 102 - 132
max_d = √454 - 169 - 100 - 169
max_d = √16
max_d = 4
Since max_d = 4, then (a, b, c, d) = (13, 10, 13, 4) is an integer solution proven below
132 + 102 + 132 + 42 → 169 + 100 + 169 + 16 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 132 - 112)
max_c = Floor(√454 - 169 - 121)
max_c = Floor(√164)
max_c = Floor(12.806248474866)
max_c = 12
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 132 - 112)/2 = 82
When min_c = 10, then it is c2 = 100 ≥ 82, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 112 - 102
max_d = √454 - 169 - 121 - 100
max_d = √64
max_d = 8
Since max_d = 8, then (a, b, c, d) = (13, 11, 10, 8) is an integer solution proven below
132 + 112 + 102 + 82 → 169 + 121 + 100 + 64 = 454
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 112 - 112
max_d = √454 - 169 - 121 - 121
max_d = √43
max_d = 6.557438524302
Since max_d = 6.557438524302 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 112 - 122
max_d = √454 - 169 - 121 - 144
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 132 - 122)
max_c = Floor(√454 - 169 - 144)
max_c = Floor(√141)
max_c = Floor(11.874342087038)
max_c = 11
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 132 - 122)/2 = 70.5
When min_c = 9, then it is c2 = 81 ≥ 70.5, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 122 - 92
max_d = √454 - 169 - 144 - 81
max_d = √60
max_d = 7.7459666924148
Since max_d = 7.7459666924148 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 122 - 102
max_d = √454 - 169 - 144 - 100
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 122 - 112
max_d = √454 - 169 - 144 - 121
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 132 - 132)
max_c = Floor(√454 - 169 - 169)
max_c = Floor(√116)
max_c = Floor(10.770329614269)
max_c = 10
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 132 - 132)/2 = 58
When min_c = 8, then it is c2 = 64 ≥ 58, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 132 - 82
max_d = √454 - 169 - 169 - 64
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 132 - 92
max_d = √454 - 169 - 169 - 81
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 132 - 102
max_d = √454 - 169 - 169 - 100
max_d = √16
max_d = 4
Since max_d = 4, then (a, b, c, d) = (13, 13, 10, 4) is an integer solution proven below
132 + 132 + 102 + 42 → 169 + 169 + 100 + 16 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 132 - 142)
max_c = Floor(√454 - 169 - 196)
max_c = Floor(√89)
max_c = Floor(9.4339811320566)
max_c = 9
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 132 - 142)/2 = 44.5
When min_c = 7, then it is c2 = 49 ≥ 44.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 142 - 72
max_d = √454 - 169 - 196 - 49
max_d = √40
max_d = 6.3245553203368
Since max_d = 6.3245553203368 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 142 - 82
max_d = √454 - 169 - 196 - 64
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (13, 14, 8, 5) is an integer solution proven below
132 + 142 + 82 + 52 → 169 + 196 + 64 + 25 = 454
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 142 - 92
max_d = √454 - 169 - 196 - 81
max_d = √8
max_d = 2.8284271247462
Since max_d = 2.8284271247462 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 132 - 152)
max_c = Floor(√454 - 169 - 225)
max_c = Floor(√60)
max_c = Floor(7.7459666924148)
max_c = 7
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 132 - 152)/2 = 30
When min_c = 6, then it is c2 = 36 ≥ 30, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 152 - 62
max_d = √454 - 169 - 225 - 36
max_d = √24
max_d = 4.8989794855664
Since max_d = 4.8989794855664 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 152 - 72
max_d = √454 - 169 - 225 - 49
max_d = √11
max_d = 3.3166247903554
Since max_d = 3.3166247903554 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 132 - 162)
max_c = Floor(√454 - 169 - 256)
max_c = Floor(√29)
max_c = Floor(5.3851648071345)
max_c = 5
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 132 - 162)/2 = 14.5
When min_c = 4, then it is c2 = 16 ≥ 14.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 162 - 42
max_d = √454 - 169 - 256 - 16
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 132 - 162 - 52
max_d = √454 - 169 - 256 - 25
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (13, 16, 5, 2) is an integer solution proven below
132 + 162 + 52 + 22 → 169 + 256 + 25 + 4 = 454
Find max_b which is Floor(√n - a2)
max_b = Floor(√454 - 142)
max_b = Floor(√454 - 196)
max_b = Floor(√258)
max_b = Floor(16.062378404209)
max_b = 16
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (454 - 142)/3 = 86
When min_b = 10, then it is b2 = 100 ≥ 86, so min_b = 10
(10, 16)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 142 - 102)
max_c = Floor(√454 - 196 - 100)
max_c = Floor(√158)
max_c = Floor(12.569805089977)
max_c = 12
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 142 - 102)/2 = 79
When min_c = 9, then it is c2 = 81 ≥ 79, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 102 - 92
max_d = √454 - 196 - 100 - 81
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 102 - 102
max_d = √454 - 196 - 100 - 100
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 102 - 112
max_d = √454 - 196 - 100 - 121
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 102 - 122
max_d = √454 - 196 - 100 - 144
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 142 - 112)
max_c = Floor(√454 - 196 - 121)
max_c = Floor(√137)
max_c = Floor(11.70469991072)
max_c = 11
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 142 - 112)/2 = 68.5
When min_c = 9, then it is c2 = 81 ≥ 68.5, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 112 - 92
max_d = √454 - 196 - 121 - 81
max_d = √56
max_d = 7.4833147735479
Since max_d = 7.4833147735479 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 112 - 102
max_d = √454 - 196 - 121 - 100
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 112 - 112
max_d = √454 - 196 - 121 - 121
max_d = √16
max_d = 4
Since max_d = 4, then (a, b, c, d) = (14, 11, 11, 4) is an integer solution proven below
142 + 112 + 112 + 42 → 196 + 121 + 121 + 16 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 142 - 122)
max_c = Floor(√454 - 196 - 144)
max_c = Floor(√114)
max_c = Floor(10.677078252031)
max_c = 10
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 142 - 122)/2 = 57
When min_c = 8, then it is c2 = 64 ≥ 57, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 122 - 82
max_d = √454 - 196 - 144 - 64
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 122 - 92
max_d = √454 - 196 - 144 - 81
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 122 - 102
max_d = √454 - 196 - 144 - 100
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 142 - 132)
max_c = Floor(√454 - 196 - 169)
max_c = Floor(√89)
max_c = Floor(9.4339811320566)
max_c = 9
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 142 - 132)/2 = 44.5
When min_c = 7, then it is c2 = 49 ≥ 44.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 132 - 72
max_d = √454 - 196 - 169 - 49
max_d = √40
max_d = 6.3245553203368
Since max_d = 6.3245553203368 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 132 - 82
max_d = √454 - 196 - 169 - 64
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (14, 13, 8, 5) is an integer solution proven below
142 + 132 + 82 + 52 → 196 + 169 + 64 + 25 = 454
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 132 - 92
max_d = √454 - 196 - 169 - 81
max_d = √8
max_d = 2.8284271247462
Since max_d = 2.8284271247462 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 142 - 142)
max_c = Floor(√454 - 196 - 196)
max_c = Floor(√62)
max_c = Floor(7.8740078740118)
max_c = 7
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 142 - 142)/2 = 31
When min_c = 6, then it is c2 = 36 ≥ 31, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 142 - 62
max_d = √454 - 196 - 196 - 36
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 142 - 72
max_d = √454 - 196 - 196 - 49
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 142 - 152)
max_c = Floor(√454 - 196 - 225)
max_c = Floor(√33)
max_c = Floor(5.744562646538)
max_c = 5
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 142 - 152)/2 = 16.5
When min_c = 5, then it is c2 = 25 ≥ 16.5, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 152 - 52
max_d = √454 - 196 - 225 - 25
max_d = √8
max_d = 2.8284271247462
Since max_d = 2.8284271247462 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 142 - 162)
max_c = Floor(√454 - 196 - 256)
max_c = Floor(√2)
max_c = Floor(1.4142135623731)
max_c = 1
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 142 - 162)/2 = 1
When min_c = 1, then it is c2 = 1 ≥ 1, so min_c = 1
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 142 - 162 - 12
max_d = √454 - 196 - 256 - 1
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (14, 16, 1, 1) is an integer solution proven below
142 + 162 + 12 + 12 → 196 + 256 + 1 + 1 = 454
Find max_b which is Floor(√n - a2)
max_b = Floor(√454 - 152)
max_b = Floor(√454 - 225)
max_b = Floor(√229)
max_b = Floor(15.132745950422)
max_b = 15
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (454 - 152)/3 = 76.333333333333
When min_b = 9, then it is b2 = 81 ≥ 76.333333333333, so min_b = 9
(9, 15)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 152 - 92)
max_c = Floor(√454 - 225 - 81)
max_c = Floor(√148)
max_c = Floor(12.165525060596)
max_c = 12
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 152 - 92)/2 = 74
When min_c = 9, then it is c2 = 81 ≥ 74, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 92 - 92
max_d = √454 - 225 - 81 - 81
max_d = √67
max_d = 8.1853527718725
Since max_d = 8.1853527718725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 92 - 102
max_d = √454 - 225 - 81 - 100
max_d = √48
max_d = 6.9282032302755
Since max_d = 6.9282032302755 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 92 - 112
max_d = √454 - 225 - 81 - 121
max_d = √27
max_d = 5.1961524227066
Since max_d = 5.1961524227066 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 92 - 122
max_d = √454 - 225 - 81 - 144
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (15, 9, 12, 2) is an integer solution proven below
152 + 92 + 122 + 22 → 225 + 81 + 144 + 4 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 152 - 102)
max_c = Floor(√454 - 225 - 100)
max_c = Floor(√129)
max_c = Floor(11.357816691601)
max_c = 11
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 152 - 102)/2 = 64.5
When min_c = 9, then it is c2 = 81 ≥ 64.5, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 102 - 92
max_d = √454 - 225 - 100 - 81
max_d = √48
max_d = 6.9282032302755
Since max_d = 6.9282032302755 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 102 - 102
max_d = √454 - 225 - 100 - 100
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 102 - 112
max_d = √454 - 225 - 100 - 121
max_d = √8
max_d = 2.8284271247462
Since max_d = 2.8284271247462 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 152 - 112)
max_c = Floor(√454 - 225 - 121)
max_c = Floor(√108)
max_c = Floor(10.392304845413)
max_c = 10
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 152 - 112)/2 = 54
When min_c = 8, then it is c2 = 64 ≥ 54, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 112 - 82
max_d = √454 - 225 - 121 - 64
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 112 - 92
max_d = √454 - 225 - 121 - 81
max_d = √27
max_d = 5.1961524227066
Since max_d = 5.1961524227066 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 112 - 102
max_d = √454 - 225 - 121 - 100
max_d = √8
max_d = 2.8284271247462
Since max_d = 2.8284271247462 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 152 - 122)
max_c = Floor(√454 - 225 - 144)
max_c = Floor(√85)
max_c = Floor(9.2195444572929)
max_c = 9
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 152 - 122)/2 = 42.5
When min_c = 7, then it is c2 = 49 ≥ 42.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 122 - 72
max_d = √454 - 225 - 144 - 49
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (15, 12, 7, 6) is an integer solution proven below
152 + 122 + 72 + 62 → 225 + 144 + 49 + 36 = 454
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 122 - 82
max_d = √454 - 225 - 144 - 64
max_d = √21
max_d = 4.5825756949558
Since max_d = 4.5825756949558 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 122 - 92
max_d = √454 - 225 - 144 - 81
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (15, 12, 9, 2) is an integer solution proven below
152 + 122 + 92 + 22 → 225 + 144 + 81 + 4 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 152 - 132)
max_c = Floor(√454 - 225 - 169)
max_c = Floor(√60)
max_c = Floor(7.7459666924148)
max_c = 7
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 152 - 132)/2 = 30
When min_c = 6, then it is c2 = 36 ≥ 30, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 132 - 62
max_d = √454 - 225 - 169 - 36
max_d = √24
max_d = 4.8989794855664
Since max_d = 4.8989794855664 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 132 - 72
max_d = √454 - 225 - 169 - 49
max_d = √11
max_d = 3.3166247903554
Since max_d = 3.3166247903554 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 152 - 142)
max_c = Floor(√454 - 225 - 196)
max_c = Floor(√33)
max_c = Floor(5.744562646538)
max_c = 5
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 152 - 142)/2 = 16.5
When min_c = 5, then it is c2 = 25 ≥ 16.5, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 142 - 52
max_d = √454 - 225 - 196 - 25
max_d = √8
max_d = 2.8284271247462
Since max_d = 2.8284271247462 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 152 - 152)
max_c = Floor(√454 - 225 - 225)
max_c = Floor(√4)
max_c = Floor(2)
max_c = 2
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 152 - 152)/2 = 2
When min_c = 2, then it is c2 = 4 ≥ 2, so min_c = 2
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 152 - 152 - 22
max_d = √454 - 225 - 225 - 4
max_d = √0
max_d = 0
Since max_d = 0, then (a, b, c, d) = (15, 15, 2, 0) is an integer solution proven below
152 + 152 + 22 + 02 → 225 + 225 + 4 + 0 = 454
Find max_b which is Floor(√n - a2)
max_b = Floor(√454 - 162)
max_b = Floor(√454 - 256)
max_b = Floor(√198)
max_b = Floor(14.07124727947)
max_b = 14
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (454 - 162)/3 = 66
When min_b = 9, then it is b2 = 81 ≥ 66, so min_b = 9
(9, 14)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 162 - 92)
max_c = Floor(√454 - 256 - 81)
max_c = Floor(√117)
max_c = Floor(10.816653826392)
max_c = 10
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 162 - 92)/2 = 58.5
When min_c = 8, then it is c2 = 64 ≥ 58.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 162 - 92 - 82
max_d = √454 - 256 - 81 - 64
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 162 - 92 - 92
max_d = √454 - 256 - 81 - 81
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (16, 9, 9, 6) is an integer solution proven below
162 + 92 + 92 + 62 → 256 + 81 + 81 + 36 = 454
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 162 - 92 - 102
max_d = √454 - 256 - 81 - 100
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 162 - 102)
max_c = Floor(√454 - 256 - 100)
max_c = Floor(√98)
max_c = Floor(9.8994949366117)
max_c = 9
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 162 - 102)/2 = 49
When min_c = 7, then it is c2 = 49 ≥ 49, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 162 - 102 - 72
max_d = √454 - 256 - 100 - 49
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (16, 10, 7, 7) is an integer solution proven below
162 + 102 + 72 + 72 → 256 + 100 + 49 + 49 = 454
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 162 - 102 - 82
max_d = √454 - 256 - 100 - 64
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 162 - 102 - 92
max_d = √454 - 256 - 100 - 81
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 162 - 112)
max_c = Floor(√454 - 256 - 121)
max_c = Floor(√77)
max_c = Floor(8.7749643873921)
max_c = 8
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 162 - 112)/2 = 38.5
When min_c = 7, then it is c2 = 49 ≥ 38.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 162 - 112 - 72
max_d = √454 - 256 - 121 - 49
max_d = √28
max_d = 5.2915026221292
Since max_d = 5.2915026221292 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 162 - 112 - 82
max_d = √454 - 256 - 121 - 64
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 162 - 122)
max_c = Floor(√454 - 256 - 144)
max_c = Floor(√54)
max_c = Floor(7.3484692283495)
max_c = 7
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 162 - 122)/2 = 27
When min_c = 6, then it is c2 = 36 ≥ 27, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 162 - 122 - 62
max_d = √454 - 256 - 144 - 36
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 162 - 122 - 72
max_d = √454 - 256 - 144 - 49
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 162 - 132)
max_c = Floor(√454 - 256 - 169)
max_c = Floor(√29)
max_c = Floor(5.3851648071345)
max_c = 5
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 162 - 132)/2 = 14.5
When min_c = 4, then it is c2 = 16 ≥ 14.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 162 - 132 - 42
max_d = √454 - 256 - 169 - 16
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 162 - 132 - 52
max_d = √454 - 256 - 169 - 25
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (16, 13, 5, 2) is an integer solution proven below
162 + 132 + 52 + 22 → 256 + 169 + 25 + 4 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 162 - 142)
max_c = Floor(√454 - 256 - 196)
max_c = Floor(√2)
max_c = Floor(1.4142135623731)
max_c = 1
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 162 - 142)/2 = 1
When min_c = 1, then it is c2 = 1 ≥ 1, so min_c = 1
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 162 - 142 - 12
max_d = √454 - 256 - 196 - 1
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (16, 14, 1, 1) is an integer solution proven below
162 + 142 + 12 + 12 → 256 + 196 + 1 + 1 = 454
Find max_b which is Floor(√n - a2)
max_b = Floor(√454 - 172)
max_b = Floor(√454 - 289)
max_b = Floor(√165)
max_b = Floor(12.845232578665)
max_b = 12
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (454 - 172)/3 = 55
When min_b = 8, then it is b2 = 64 ≥ 55, so min_b = 8
(8, 12)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 172 - 82)
max_c = Floor(√454 - 289 - 64)
max_c = Floor(√101)
max_c = Floor(10.049875621121)
max_c = 10
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 172 - 82)/2 = 50.5
When min_c = 8, then it is c2 = 64 ≥ 50.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 172 - 82 - 82
max_d = √454 - 289 - 64 - 64
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 172 - 82 - 92
max_d = √454 - 289 - 64 - 81
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 172 - 82 - 102
max_d = √454 - 289 - 64 - 100
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (17, 8, 10, 1) is an integer solution proven below
172 + 82 + 102 + 12 → 289 + 64 + 100 + 1 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 172 - 92)
max_c = Floor(√454 - 289 - 81)
max_c = Floor(√84)
max_c = Floor(9.1651513899117)
max_c = 9
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 172 - 92)/2 = 42
When min_c = 7, then it is c2 = 49 ≥ 42, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 172 - 92 - 72
max_d = √454 - 289 - 81 - 49
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 172 - 92 - 82
max_d = √454 - 289 - 81 - 64
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 172 - 92 - 92
max_d = √454 - 289 - 81 - 81
max_d = √3
max_d = 1.7320508075689
Since max_d = 1.7320508075689 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 172 - 102)
max_c = Floor(√454 - 289 - 100)
max_c = Floor(√65)
max_c = Floor(8.0622577482985)
max_c = 8
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 172 - 102)/2 = 32.5
When min_c = 6, then it is c2 = 36 ≥ 32.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 172 - 102 - 62
max_d = √454 - 289 - 100 - 36
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 172 - 102 - 72
max_d = √454 - 289 - 100 - 49
max_d = √16
max_d = 4
Since max_d = 4, then (a, b, c, d) = (17, 10, 7, 4) is an integer solution proven below
172 + 102 + 72 + 42 → 289 + 100 + 49 + 16 = 454
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 172 - 102 - 82
max_d = √454 - 289 - 100 - 64
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (17, 10, 8, 1) is an integer solution proven below
172 + 102 + 82 + 12 → 289 + 100 + 64 + 1 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 172 - 112)
max_c = Floor(√454 - 289 - 121)
max_c = Floor(√44)
max_c = Floor(6.6332495807108)
max_c = 6
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 172 - 112)/2 = 22
When min_c = 5, then it is c2 = 25 ≥ 22, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 172 - 112 - 52
max_d = √454 - 289 - 121 - 25
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 172 - 112 - 62
max_d = √454 - 289 - 121 - 36
max_d = √8
max_d = 2.8284271247462
Since max_d = 2.8284271247462 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 172 - 122)
max_c = Floor(√454 - 289 - 144)
max_c = Floor(√21)
max_c = Floor(4.5825756949558)
max_c = 4
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 172 - 122)/2 = 10.5
When min_c = 4, then it is c2 = 16 ≥ 10.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 172 - 122 - 42
max_d = √454 - 289 - 144 - 16
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√454 - 182)
max_b = Floor(√454 - 324)
max_b = Floor(√130)
max_b = Floor(11.401754250991)
max_b = 11
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (454 - 182)/3 = 43.333333333333
When min_b = 7, then it is b2 = 49 ≥ 43.333333333333, so min_b = 7
(7, 11)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 182 - 72)
max_c = Floor(√454 - 324 - 49)
max_c = Floor(√81)
max_c = Floor(9)
max_c = 9
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 182 - 72)/2 = 40.5
When min_c = 7, then it is c2 = 49 ≥ 40.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 182 - 72 - 72
max_d = √454 - 324 - 49 - 49
max_d = √32
max_d = 5.6568542494924
Since max_d = 5.6568542494924 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 182 - 72 - 82
max_d = √454 - 324 - 49 - 64
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 182 - 72 - 92
max_d = √454 - 324 - 49 - 81
max_d = √0
max_d = 0
Since max_d = 0, then (a, b, c, d) = (18, 7, 9, 0) is an integer solution proven below
182 + 72 + 92 + 02 → 324 + 49 + 81 + 0 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 182 - 82)
max_c = Floor(√454 - 324 - 64)
max_c = Floor(√66)
max_c = Floor(8.124038404636)
max_c = 8
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 182 - 82)/2 = 33
When min_c = 6, then it is c2 = 36 ≥ 33, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 182 - 82 - 62
max_d = √454 - 324 - 64 - 36
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 182 - 82 - 72
max_d = √454 - 324 - 64 - 49
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 182 - 82 - 82
max_d = √454 - 324 - 64 - 64
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 182 - 92)
max_c = Floor(√454 - 324 - 81)
max_c = Floor(√49)
max_c = Floor(7)
max_c = 7
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 182 - 92)/2 = 24.5
When min_c = 5, then it is c2 = 25 ≥ 24.5, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 182 - 92 - 52
max_d = √454 - 324 - 81 - 25
max_d = √24
max_d = 4.8989794855664
Since max_d = 4.8989794855664 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 182 - 92 - 62
max_d = √454 - 324 - 81 - 36
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 182 - 92 - 72
max_d = √454 - 324 - 81 - 49
max_d = √0
max_d = 0
Since max_d = 0, then (a, b, c, d) = (18, 9, 7, 0) is an integer solution proven below
182 + 92 + 72 + 02 → 324 + 81 + 49 + 0 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 182 - 102)
max_c = Floor(√454 - 324 - 100)
max_c = Floor(√30)
max_c = Floor(5.4772255750517)
max_c = 5
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 182 - 102)/2 = 15
When min_c = 4, then it is c2 = 16 ≥ 15, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 182 - 102 - 42
max_d = √454 - 324 - 100 - 16
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 182 - 102 - 52
max_d = √454 - 324 - 100 - 25
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 182 - 112)
max_c = Floor(√454 - 324 - 121)
max_c = Floor(√9)
max_c = Floor(3)
max_c = 3
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 182 - 112)/2 = 4.5
When min_c = 3, then it is c2 = 9 ≥ 4.5, so min_c = 3
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 182 - 112 - 32
max_d = √454 - 324 - 121 - 9
max_d = √0
max_d = 0
Since max_d = 0, then (a, b, c, d) = (18, 11, 3, 0) is an integer solution proven below
182 + 112 + 32 + 02 → 324 + 121 + 9 + 0 = 454
Find max_b which is Floor(√n - a2)
max_b = Floor(√454 - 192)
max_b = Floor(√454 - 361)
max_b = Floor(√93)
max_b = Floor(9.643650760993)
max_b = 9
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (454 - 192)/3 = 31
When min_b = 6, then it is b2 = 36 ≥ 31, so min_b = 6
(6, 9)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 192 - 62)
max_c = Floor(√454 - 361 - 36)
max_c = Floor(√57)
max_c = Floor(7.5498344352707)
max_c = 7
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 192 - 62)/2 = 28.5
When min_c = 6, then it is c2 = 36 ≥ 28.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 192 - 62 - 62
max_d = √454 - 361 - 36 - 36
max_d = √21
max_d = 4.5825756949558
Since max_d = 4.5825756949558 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 192 - 62 - 72
max_d = √454 - 361 - 36 - 49
max_d = √8
max_d = 2.8284271247462
Since max_d = 2.8284271247462 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 192 - 72)
max_c = Floor(√454 - 361 - 49)
max_c = Floor(√44)
max_c = Floor(6.6332495807108)
max_c = 6
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 192 - 72)/2 = 22
When min_c = 5, then it is c2 = 25 ≥ 22, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 192 - 72 - 52
max_d = √454 - 361 - 49 - 25
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 192 - 72 - 62
max_d = √454 - 361 - 49 - 36
max_d = √8
max_d = 2.8284271247462
Since max_d = 2.8284271247462 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 192 - 82)
max_c = Floor(√454 - 361 - 64)
max_c = Floor(√29)
max_c = Floor(5.3851648071345)
max_c = 5
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 192 - 82)/2 = 14.5
When min_c = 4, then it is c2 = 16 ≥ 14.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 192 - 82 - 42
max_d = √454 - 361 - 64 - 16
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 192 - 82 - 52
max_d = √454 - 361 - 64 - 25
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (19, 8, 5, 2) is an integer solution proven below
192 + 82 + 52 + 22 → 361 + 64 + 25 + 4 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 192 - 92)
max_c = Floor(√454 - 361 - 81)
max_c = Floor(√12)
max_c = Floor(3.4641016151378)
max_c = 3
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 192 - 92)/2 = 6
When min_c = 3, then it is c2 = 9 ≥ 6, so min_c = 3
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 192 - 92 - 32
max_d = √454 - 361 - 81 - 9
max_d = √3
max_d = 1.7320508075689
Since max_d = 1.7320508075689 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√454 - 202)
max_b = Floor(√454 - 400)
max_b = Floor(√54)
max_b = Floor(7.3484692283495)
max_b = 7
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (454 - 202)/3 = 18
When min_b = 5, then it is b2 = 25 ≥ 18, so min_b = 5
(5, 7)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 202 - 52)
max_c = Floor(√454 - 400 - 25)
max_c = Floor(√29)
max_c = Floor(5.3851648071345)
max_c = 5
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 202 - 52)/2 = 14.5
When min_c = 4, then it is c2 = 16 ≥ 14.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 202 - 52 - 42
max_d = √454 - 400 - 25 - 16
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 202 - 52 - 52
max_d = √454 - 400 - 25 - 25
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (20, 5, 5, 2) is an integer solution proven below
202 + 52 + 52 + 22 → 400 + 25 + 25 + 4 = 454
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 202 - 62)
max_c = Floor(√454 - 400 - 36)
max_c = Floor(√18)
max_c = Floor(4.2426406871193)
max_c = 4
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 202 - 62)/2 = 9
When min_c = 3, then it is c2 = 9 ≥ 9, so min_c = 3
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 202 - 62 - 32
max_d = √454 - 400 - 36 - 9
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (20, 6, 3, 3) is an integer solution proven below
202 + 62 + 32 + 32 → 400 + 36 + 9 + 9 = 454
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 202 - 62 - 42
max_d = √454 - 400 - 36 - 16
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 202 - 72)
max_c = Floor(√454 - 400 - 49)
max_c = Floor(√5)
max_c = Floor(2.2360679774998)
max_c = 2
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 202 - 72)/2 = 2.5
When min_c = 2, then it is c2 = 4 ≥ 2.5, so min_c = 2
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 202 - 72 - 22
max_d = √454 - 400 - 49 - 4
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (20, 7, 2, 1) is an integer solution proven below
202 + 72 + 22 + 12 → 400 + 49 + 4 + 1 = 454
Find max_b which is Floor(√n - a2)
max_b = Floor(√454 - 212)
max_b = Floor(√454 - 441)
max_b = Floor(√13)
max_b = Floor(3.605551275464)
max_b = 3
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (454 - 212)/3 = 4.3333333333333
When min_b = 3, then it is b2 = 9 ≥ 4.3333333333333, so min_b = 3
(3, 3)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√454 - 212 - 32)
max_c = Floor(√454 - 441 - 9)
max_c = Floor(√4)
max_c = Floor(2)
max_c = 2
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (454 - 212 - 32)/2 = 2
When min_c = 2, then it is c2 = 4 ≥ 2, so min_c = 2
See if d is an integer solution which is √n - a2 - b2
max_d = √454 - 212 - 32 - 22
max_d = √454 - 441 - 9 - 4
max_d = √0
max_d = 0
Since max_d = 0, then (a, b, c, d) = (21, 3, 2, 0) is an integer solution proven below
212 + 32 + 22 + 02 → 441 + 9 + 4 + 0 = 454