Show the Lagrange Four Square Theorem for

300

Lagrange Four Square Definition

For any natural number (p), we write as

p = a2 + b2 + c2 + d2

Determine max_a:

Floor(√300) = Floor(17.320508075689)

Floor(17.320508075689) = 17
This is called max_a

Determine min_a:

Find the first value of a such that
a2 ≥ n/4

Start with min_a = 1 and increase by 1

Continue until we reach or breach n/4 → 300/4 = 75

When min_a = 9, then it is a2 = 81 ≥ 75, so min_a = 9

Find a in the range of (min_a, max_a)

(9, 17)

a = 9

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 92)

max_b = Floor(√300 - 81)

max_b = Floor(√219)

max_b = Floor(14.798648586949)

max_b = 14

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 92)/3 = 73

When min_b = 9, then it is b2 = 81 ≥ 73, so min_b = 9

Test values for b in the range of (min_b, max_b)

(9, 14)

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 92 - 92)

max_c = Floor(√300 - 81 - 81)

max_c = Floor(√138)

max_c = Floor(11.747340124471)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 92 - 92)/2 = 69

When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 92 - 92

max_d = √300 - 81 - 81 - 81

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 92 - 102

max_d = √300 - 81 - 81 - 100

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 92 - 112

max_d = √300 - 81 - 81 - 121

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 92 - 102)

max_c = Floor(√300 - 81 - 100)

max_c = Floor(√119)

max_c = Floor(10.908712114636)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 92 - 102)/2 = 59.5

When min_c = 8, then it is c2 = 64 ≥ 59.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 102 - 82

max_d = √300 - 81 - 100 - 64

max_d = √55

max_d = 7.4161984870957

Since max_d = 7.4161984870957 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 102 - 92

max_d = √300 - 81 - 100 - 81

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 102 - 102

max_d = √300 - 81 - 100 - 100

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 92 - 112)

max_c = Floor(√300 - 81 - 121)

max_c = Floor(√98)

max_c = Floor(9.8994949366117)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 92 - 112)/2 = 49

When min_c = 7, then it is c2 = 49 ≥ 49, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 112 - 72

max_d = √300 - 81 - 121 - 49

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (9, 11, 7, 7) is an integer solution proven below

92 + 112 + 72 + 72 → 81 + 121 + 49 + 49 = 300

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 112 - 82

max_d = √300 - 81 - 121 - 64

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 112 - 92

max_d = √300 - 81 - 121 - 81

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 92 - 122)

max_c = Floor(√300 - 81 - 144)

max_c = Floor(√75)

max_c = Floor(8.6602540378444)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 92 - 122)/2 = 37.5

When min_c = 7, then it is c2 = 49 ≥ 37.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 122 - 72

max_d = √300 - 81 - 144 - 49

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 122 - 82

max_d = √300 - 81 - 144 - 64

max_d = √11

max_d = 3.3166247903554

Since max_d = 3.3166247903554 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 92 - 132)

max_c = Floor(√300 - 81 - 169)

max_c = Floor(√50)

max_c = Floor(7.0710678118655)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 92 - 132)/2 = 25

When min_c = 5, then it is c2 = 25 ≥ 25, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 132 - 52

max_d = √300 - 81 - 169 - 25

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (9, 13, 5, 5) is an integer solution proven below

92 + 132 + 52 + 52 → 81 + 169 + 25 + 25 = 300

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 132 - 62

max_d = √300 - 81 - 169 - 36

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 132 - 72

max_d = √300 - 81 - 169 - 49

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (9, 13, 7, 1) is an integer solution proven below

92 + 132 + 72 + 12 → 81 + 169 + 49 + 1 = 300

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 92 - 142)

max_c = Floor(√300 - 81 - 196)

max_c = Floor(√23)

max_c = Floor(4.7958315233127)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 92 - 142)/2 = 11.5

When min_c = 4, then it is c2 = 16 ≥ 11.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 92 - 142 - 42

max_d = √300 - 81 - 196 - 16

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

a = 10

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 102)

max_b = Floor(√300 - 100)

max_b = Floor(√200)

max_b = Floor(14.142135623731)

max_b = 14

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 102)/3 = 66.666666666667

When min_b = 9, then it is b2 = 81 ≥ 66.666666666667, so min_b = 9

Test values for b in the range of (min_b, max_b)

(9, 14)

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 102 - 92)

max_c = Floor(√300 - 100 - 81)

max_c = Floor(√119)

max_c = Floor(10.908712114636)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 102 - 92)/2 = 59.5

When min_c = 8, then it is c2 = 64 ≥ 59.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 92 - 82

max_d = √300 - 100 - 81 - 64

max_d = √55

max_d = 7.4161984870957

Since max_d = 7.4161984870957 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 92 - 92

max_d = √300 - 100 - 81 - 81

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 92 - 102

max_d = √300 - 100 - 81 - 100

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 102 - 102)

max_c = Floor(√300 - 100 - 100)

max_c = Floor(√100)

max_c = Floor(10)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 102 - 102)/2 = 50

When min_c = 8, then it is c2 = 64 ≥ 50, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 102 - 82

max_d = √300 - 100 - 100 - 64

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (10, 10, 8, 6) is an integer solution proven below

102 + 102 + 82 + 62 → 100 + 100 + 64 + 36 = 300

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 102 - 92

max_d = √300 - 100 - 100 - 81

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 102 - 102

max_d = √300 - 100 - 100 - 100

max_d = √0

max_d = 0

Since max_d = 0, then (a, b, c, d) = (10, 10, 10, 0) is an integer solution proven below

102 + 102 + 102 + 02 → 100 + 100 + 100 + 0 = 300

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 102 - 112)

max_c = Floor(√300 - 100 - 121)

max_c = Floor(√79)

max_c = Floor(8.8881944173156)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 102 - 112)/2 = 39.5

When min_c = 7, then it is c2 = 49 ≥ 39.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 112 - 72

max_d = √300 - 100 - 121 - 49

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 112 - 82

max_d = √300 - 100 - 121 - 64

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 102 - 122)

max_c = Floor(√300 - 100 - 144)

max_c = Floor(√56)

max_c = Floor(7.4833147735479)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 102 - 122)/2 = 28

When min_c = 6, then it is c2 = 36 ≥ 28, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 122 - 62

max_d = √300 - 100 - 144 - 36

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 122 - 72

max_d = √300 - 100 - 144 - 49

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 102 - 132)

max_c = Floor(√300 - 100 - 169)

max_c = Floor(√31)

max_c = Floor(5.56776436283)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 102 - 132)/2 = 15.5

When min_c = 4, then it is c2 = 16 ≥ 15.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 132 - 42

max_d = √300 - 100 - 169 - 16

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 132 - 52

max_d = √300 - 100 - 169 - 25

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 102 - 142)

max_c = Floor(√300 - 100 - 196)

max_c = Floor(√4)

max_c = Floor(2)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 102 - 142)/2 = 2

When min_c = 2, then it is c2 = 4 ≥ 2, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 102 - 142 - 22

max_d = √300 - 100 - 196 - 4

max_d = √0

max_d = 0

Since max_d = 0, then (a, b, c, d) = (10, 14, 2, 0) is an integer solution proven below

102 + 142 + 22 + 02 → 100 + 196 + 4 + 0 = 300

a = 11

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 112)

max_b = Floor(√300 - 121)

max_b = Floor(√179)

max_b = Floor(13.37908816026)

max_b = 13

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 112)/3 = 59.666666666667

When min_b = 8, then it is b2 = 64 ≥ 59.666666666667, so min_b = 8

Test values for b in the range of (min_b, max_b)

(8, 13)

b = 8

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 112 - 82)

max_c = Floor(√300 - 121 - 64)

max_c = Floor(√115)

max_c = Floor(10.723805294764)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 112 - 82)/2 = 57.5

When min_c = 8, then it is c2 = 64 ≥ 57.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 82 - 82

max_d = √300 - 121 - 64 - 64

max_d = √51

max_d = 7.1414284285429

Since max_d = 7.1414284285429 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 82 - 92

max_d = √300 - 121 - 64 - 81

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 82 - 102

max_d = √300 - 121 - 64 - 100

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 112 - 92)

max_c = Floor(√300 - 121 - 81)

max_c = Floor(√98)

max_c = Floor(9.8994949366117)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 112 - 92)/2 = 49

When min_c = 7, then it is c2 = 49 ≥ 49, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 92 - 72

max_d = √300 - 121 - 81 - 49

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (11, 9, 7, 7) is an integer solution proven below

112 + 92 + 72 + 72 → 121 + 81 + 49 + 49 = 300

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 92 - 82

max_d = √300 - 121 - 81 - 64

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 92 - 92

max_d = √300 - 121 - 81 - 81

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 112 - 102)

max_c = Floor(√300 - 121 - 100)

max_c = Floor(√79)

max_c = Floor(8.8881944173156)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 112 - 102)/2 = 39.5

When min_c = 7, then it is c2 = 49 ≥ 39.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 102 - 72

max_d = √300 - 121 - 100 - 49

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 102 - 82

max_d = √300 - 121 - 100 - 64

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 112 - 112)

max_c = Floor(√300 - 121 - 121)

max_c = Floor(√58)

max_c = Floor(7.6157731058639)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 112 - 112)/2 = 29

When min_c = 6, then it is c2 = 36 ≥ 29, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 112 - 62

max_d = √300 - 121 - 121 - 36

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 112 - 72

max_d = √300 - 121 - 121 - 49

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (11, 11, 7, 3) is an integer solution proven below

112 + 112 + 72 + 32 → 121 + 121 + 49 + 9 = 300

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 112 - 122)

max_c = Floor(√300 - 121 - 144)

max_c = Floor(√35)

max_c = Floor(5.9160797830996)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 112 - 122)/2 = 17.5

When min_c = 5, then it is c2 = 25 ≥ 17.5, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 122 - 52

max_d = √300 - 121 - 144 - 25

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 112 - 132)

max_c = Floor(√300 - 121 - 169)

max_c = Floor(√10)

max_c = Floor(3.1622776601684)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 112 - 132)/2 = 5

When min_c = 3, then it is c2 = 9 ≥ 5, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 112 - 132 - 32

max_d = √300 - 121 - 169 - 9

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (11, 13, 3, 1) is an integer solution proven below

112 + 132 + 32 + 12 → 121 + 169 + 9 + 1 = 300

a = 12

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 122)

max_b = Floor(√300 - 144)

max_b = Floor(√156)

max_b = Floor(12.489995996797)

max_b = 12

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 122)/3 = 52

When min_b = 8, then it is b2 = 64 ≥ 52, so min_b = 8

Test values for b in the range of (min_b, max_b)

(8, 12)

b = 8

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 122 - 82)

max_c = Floor(√300 - 144 - 64)

max_c = Floor(√92)

max_c = Floor(9.5916630466254)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 122 - 82)/2 = 46

When min_c = 7, then it is c2 = 49 ≥ 46, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 82 - 72

max_d = √300 - 144 - 64 - 49

max_d = √43

max_d = 6.557438524302

Since max_d = 6.557438524302 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 82 - 82

max_d = √300 - 144 - 64 - 64

max_d = √28

max_d = 5.2915026221292

Since max_d = 5.2915026221292 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 82 - 92

max_d = √300 - 144 - 64 - 81

max_d = √11

max_d = 3.3166247903554

Since max_d = 3.3166247903554 is not an integer, this is not a solution

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 122 - 92)

max_c = Floor(√300 - 144 - 81)

max_c = Floor(√75)

max_c = Floor(8.6602540378444)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 122 - 92)/2 = 37.5

When min_c = 7, then it is c2 = 49 ≥ 37.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 92 - 72

max_d = √300 - 144 - 81 - 49

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 92 - 82

max_d = √300 - 144 - 81 - 64

max_d = √11

max_d = 3.3166247903554

Since max_d = 3.3166247903554 is not an integer, this is not a solution

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 122 - 102)

max_c = Floor(√300 - 144 - 100)

max_c = Floor(√56)

max_c = Floor(7.4833147735479)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 122 - 102)/2 = 28

When min_c = 6, then it is c2 = 36 ≥ 28, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 102 - 62

max_d = √300 - 144 - 100 - 36

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 102 - 72

max_d = √300 - 144 - 100 - 49

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 122 - 112)

max_c = Floor(√300 - 144 - 121)

max_c = Floor(√35)

max_c = Floor(5.9160797830996)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 122 - 112)/2 = 17.5

When min_c = 5, then it is c2 = 25 ≥ 17.5, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 112 - 52

max_d = √300 - 144 - 121 - 25

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 122 - 122)

max_c = Floor(√300 - 144 - 144)

max_c = Floor(√12)

max_c = Floor(3.4641016151378)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 122 - 122)/2 = 6

When min_c = 3, then it is c2 = 9 ≥ 6, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 122 - 122 - 32

max_d = √300 - 144 - 144 - 9

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

a = 13

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 132)

max_b = Floor(√300 - 169)

max_b = Floor(√131)

max_b = Floor(11.44552314226)

max_b = 11

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 132)/3 = 43.666666666667

When min_b = 7, then it is b2 = 49 ≥ 43.666666666667, so min_b = 7

Test values for b in the range of (min_b, max_b)

(7, 11)

b = 7

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 132 - 72)

max_c = Floor(√300 - 169 - 49)

max_c = Floor(√82)

max_c = Floor(9.0553851381374)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 132 - 72)/2 = 41

When min_c = 7, then it is c2 = 49 ≥ 41, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 72 - 72

max_d = √300 - 169 - 49 - 49

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 72 - 82

max_d = √300 - 169 - 49 - 64

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 72 - 92

max_d = √300 - 169 - 49 - 81

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (13, 7, 9, 1) is an integer solution proven below

132 + 72 + 92 + 12 → 169 + 49 + 81 + 1 = 300

b = 8

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 132 - 82)

max_c = Floor(√300 - 169 - 64)

max_c = Floor(√67)

max_c = Floor(8.1853527718725)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 132 - 82)/2 = 33.5

When min_c = 6, then it is c2 = 36 ≥ 33.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 82 - 62

max_d = √300 - 169 - 64 - 36

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 82 - 72

max_d = √300 - 169 - 64 - 49

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 82 - 82

max_d = √300 - 169 - 64 - 64

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 132 - 92)

max_c = Floor(√300 - 169 - 81)

max_c = Floor(√50)

max_c = Floor(7.0710678118655)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 132 - 92)/2 = 25

When min_c = 5, then it is c2 = 25 ≥ 25, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 92 - 52

max_d = √300 - 169 - 81 - 25

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (13, 9, 5, 5) is an integer solution proven below

132 + 92 + 52 + 52 → 169 + 81 + 25 + 25 = 300

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 92 - 62

max_d = √300 - 169 - 81 - 36

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 92 - 72

max_d = √300 - 169 - 81 - 49

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (13, 9, 7, 1) is an integer solution proven below

132 + 92 + 72 + 12 → 169 + 81 + 49 + 1 = 300

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 132 - 102)

max_c = Floor(√300 - 169 - 100)

max_c = Floor(√31)

max_c = Floor(5.56776436283)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 132 - 102)/2 = 15.5

When min_c = 4, then it is c2 = 16 ≥ 15.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 102 - 42

max_d = √300 - 169 - 100 - 16

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 102 - 52

max_d = √300 - 169 - 100 - 25

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 132 - 112)

max_c = Floor(√300 - 169 - 121)

max_c = Floor(√10)

max_c = Floor(3.1622776601684)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 132 - 112)/2 = 5

When min_c = 3, then it is c2 = 9 ≥ 5, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 132 - 112 - 32

max_d = √300 - 169 - 121 - 9

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (13, 11, 3, 1) is an integer solution proven below

132 + 112 + 32 + 12 → 169 + 121 + 9 + 1 = 300

a = 14

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 142)

max_b = Floor(√300 - 196)

max_b = Floor(√104)

max_b = Floor(10.198039027186)

max_b = 10

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 142)/3 = 34.666666666667

When min_b = 6, then it is b2 = 36 ≥ 34.666666666667, so min_b = 6

Test values for b in the range of (min_b, max_b)

(6, 10)

b = 6

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 142 - 62)

max_c = Floor(√300 - 196 - 36)

max_c = Floor(√68)

max_c = Floor(8.2462112512353)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 142 - 62)/2 = 34

When min_c = 6, then it is c2 = 36 ≥ 34, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 62 - 62

max_d = √300 - 196 - 36 - 36

max_d = √32

max_d = 5.6568542494924

Since max_d = 5.6568542494924 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 62 - 72

max_d = √300 - 196 - 36 - 49

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 62 - 82

max_d = √300 - 196 - 36 - 64

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (14, 6, 8, 2) is an integer solution proven below

142 + 62 + 82 + 22 → 196 + 36 + 64 + 4 = 300

b = 7

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 142 - 72)

max_c = Floor(√300 - 196 - 49)

max_c = Floor(√55)

max_c = Floor(7.4161984870957)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 142 - 72)/2 = 27.5

When min_c = 6, then it is c2 = 36 ≥ 27.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 72 - 62

max_d = √300 - 196 - 49 - 36

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 72 - 72

max_d = √300 - 196 - 49 - 49

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 8

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 142 - 82)

max_c = Floor(√300 - 196 - 64)

max_c = Floor(√40)

max_c = Floor(6.3245553203368)

max_c = 6

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 142 - 82)/2 = 20

When min_c = 5, then it is c2 = 25 ≥ 20, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 82 - 52

max_d = √300 - 196 - 64 - 25

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 82 - 62

max_d = √300 - 196 - 64 - 36

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (14, 8, 6, 2) is an integer solution proven below

142 + 82 + 62 + 22 → 196 + 64 + 36 + 4 = 300

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 142 - 92)

max_c = Floor(√300 - 196 - 81)

max_c = Floor(√23)

max_c = Floor(4.7958315233127)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 142 - 92)/2 = 11.5

When min_c = 4, then it is c2 = 16 ≥ 11.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 92 - 42

max_d = √300 - 196 - 81 - 16

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 142 - 102)

max_c = Floor(√300 - 196 - 100)

max_c = Floor(√4)

max_c = Floor(2)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 142 - 102)/2 = 2

When min_c = 2, then it is c2 = 4 ≥ 2, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 142 - 102 - 22

max_d = √300 - 196 - 100 - 4

max_d = √0

max_d = 0

Since max_d = 0, then (a, b, c, d) = (14, 10, 2, 0) is an integer solution proven below

142 + 102 + 22 + 02 → 196 + 100 + 4 + 0 = 300

a = 15

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 152)

max_b = Floor(√300 - 225)

max_b = Floor(√75)

max_b = Floor(8.6602540378444)

max_b = 8

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 152)/3 = 25

When min_b = 5, then it is b2 = 25 ≥ 25, so min_b = 5

Test values for b in the range of (min_b, max_b)

(5, 8)

b = 5

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 152 - 52)

max_c = Floor(√300 - 225 - 25)

max_c = Floor(√50)

max_c = Floor(7.0710678118655)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 152 - 52)/2 = 25

When min_c = 5, then it is c2 = 25 ≥ 25, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 52 - 52

max_d = √300 - 225 - 25 - 25

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (15, 5, 5, 5) is an integer solution proven below

152 + 52 + 52 + 52 → 225 + 25 + 25 + 25 = 300

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 52 - 62

max_d = √300 - 225 - 25 - 36

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 52 - 72

max_d = √300 - 225 - 25 - 49

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (15, 5, 7, 1) is an integer solution proven below

152 + 52 + 72 + 12 → 225 + 25 + 49 + 1 = 300

b = 6

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 152 - 62)

max_c = Floor(√300 - 225 - 36)

max_c = Floor(√39)

max_c = Floor(6.2449979983984)

max_c = 6

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 152 - 62)/2 = 19.5

When min_c = 5, then it is c2 = 25 ≥ 19.5, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 62 - 52

max_d = √300 - 225 - 36 - 25

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 62 - 62

max_d = √300 - 225 - 36 - 36

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 7

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 152 - 72)

max_c = Floor(√300 - 225 - 49)

max_c = Floor(√26)

max_c = Floor(5.0990195135928)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 152 - 72)/2 = 13

When min_c = 4, then it is c2 = 16 ≥ 13, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 72 - 42

max_d = √300 - 225 - 49 - 16

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 72 - 52

max_d = √300 - 225 - 49 - 25

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (15, 7, 5, 1) is an integer solution proven below

152 + 72 + 52 + 12 → 225 + 49 + 25 + 1 = 300

b = 8

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 152 - 82)

max_c = Floor(√300 - 225 - 64)

max_c = Floor(√11)

max_c = Floor(3.3166247903554)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 152 - 82)/2 = 5.5

When min_c = 3, then it is c2 = 9 ≥ 5.5, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 152 - 82 - 32

max_d = √300 - 225 - 64 - 9

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 16

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 162)

max_b = Floor(√300 - 256)

max_b = Floor(√44)

max_b = Floor(6.6332495807108)

max_b = 6

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 162)/3 = 14.666666666667

When min_b = 4, then it is b2 = 16 ≥ 14.666666666667, so min_b = 4

Test values for b in the range of (min_b, max_b)

(4, 6)

b = 4

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 162 - 42)

max_c = Floor(√300 - 256 - 16)

max_c = Floor(√28)

max_c = Floor(5.2915026221292)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 162 - 42)/2 = 14

When min_c = 4, then it is c2 = 16 ≥ 14, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 162 - 42 - 42

max_d = √300 - 256 - 16 - 16

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 162 - 42 - 52

max_d = √300 - 256 - 16 - 25

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 5

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 162 - 52)

max_c = Floor(√300 - 256 - 25)

max_c = Floor(√19)

max_c = Floor(4.3588989435407)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 162 - 52)/2 = 9.5

When min_c = 4, then it is c2 = 16 ≥ 9.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 162 - 52 - 42

max_d = √300 - 256 - 25 - 16

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 6

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 162 - 62)

max_c = Floor(√300 - 256 - 36)

max_c = Floor(√8)

max_c = Floor(2.8284271247462)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 162 - 62)/2 = 4

When min_c = 2, then it is c2 = 4 ≥ 4, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 162 - 62 - 22

max_d = √300 - 256 - 36 - 4

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (16, 6, 2, 2) is an integer solution proven below

162 + 62 + 22 + 22 → 256 + 36 + 4 + 4 = 300

a = 17

Find max_b which is Floor(√n - a2)

max_b = Floor(√300 - 172)

max_b = Floor(√300 - 289)

max_b = Floor(√11)

max_b = Floor(3.3166247903554)

max_b = 3

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 172)/3 = 3.6666666666667

When min_b = 2, then it is b2 = 4 ≥ 3.6666666666667, so min_b = 2

Test values for b in the range of (min_b, max_b)

(2, 3)

b = 2

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 172 - 22)

max_c = Floor(√300 - 289 - 4)

max_c = Floor(√7)

max_c = Floor(2.6457513110646)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 172 - 22)/2 = 3.5

When min_c = 2, then it is c2 = 4 ≥ 3.5, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 172 - 22 - 22

max_d = √300 - 289 - 4 - 4

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 3

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√300 - 172 - 32)

max_c = Floor(√300 - 289 - 9)

max_c = Floor(√2)

max_c = Floor(1.4142135623731)

max_c = 1

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 1 and increase by 1

Go until (n - a2 - b2 )/2 → (300 - 172 - 32)/2 = 1

When min_c = 1, then it is c2 = 1 ≥ 1, so min_c = 1

c = 1

See if d is an integer solution which is √n - a2 - b2

max_d = √300 - 172 - 32 - 12

max_d = √300 - 289 - 9 - 1

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (17, 3, 1, 1) is an integer solution proven below

172 + 32 + 12 + 12 → 289 + 9 + 1 + 1 = 300

List out 21 solutions:

(a, b, c, d) = (9, 11, 7, 7)
(a, b, c, d) = (9, 13, 5, 5)
(a, b, c, d) = (9, 13, 7, 1)
(a, b, c, d) = (10, 10, 8, 6)
(a, b, c, d) = (10, 10, 10, 0)
(a, b, c, d) = (10, 14, 2, 0)
(a, b, c, d) = (11, 9, 7, 7)
(a, b, c, d) = (11, 11, 7, 3)
(a, b, c, d) = (11, 13, 3, 1)
(a, b, c, d) = (13, 7, 9, 1)
(a, b, c, d) = (13, 9, 5, 5)
(a, b, c, d) = (13, 9, 7, 1)
(a, b, c, d) = (13, 11, 3, 1)
(a, b, c, d) = (14, 6, 8, 2)
(a, b, c, d) = (14, 8, 6, 2)
(a, b, c, d) = (14, 10, 2, 0)
(a, b, c, d) = (15, 5, 5, 5)
(a, b, c, d) = (15, 5, 7, 1)
(a, b, c, d) = (15, 7, 5, 1)
(a, b, c, d) = (16, 6, 2, 2)
(a, b, c, d) = (17, 3, 1, 1)


You have 2 free calculationss remaining




What is the Answer?
(a, b, c, d) = (9, 11, 7, 7)
(a, b, c, d) = (9, 13, 5, 5)
(a, b, c, d) = (9, 13, 7, 1)
(a, b, c, d) = (10, 10, 8, 6)
(a, b, c, d) = (10, 10, 10, 0)
(a, b, c, d) = (10, 14, 2, 0)
(a, b, c, d) = (11, 9, 7, 7)
(a, b, c, d) = (11, 11, 7, 3)
(a, b, c, d) = (11, 13, 3, 1)
(a, b, c, d) = (13, 7, 9, 1)
(a, b, c, d) = (13, 9, 5, 5)
(a, b, c, d) = (13, 9, 7, 1)
(a, b, c, d) = (13, 11, 3, 1)
(a, b, c, d) = (14, 6, 8, 2)
(a, b, c, d) = (14, 8, 6, 2)
(a, b, c, d) = (14, 10, 2, 0)
(a, b, c, d) = (15, 5, 5, 5)
(a, b, c, d) = (15, 5, 7, 1)
(a, b, c, d) = (15, 7, 5, 1)
(a, b, c, d) = (16, 6, 2, 2)
(a, b, c, d) = (17, 3, 1, 1)
How does the Lagrange Four Square Theorem (Bachet Conjecture) Calculator work?
Free Lagrange Four Square Theorem (Bachet Conjecture) Calculator - Builds the Lagrange Theorem Notation (Bachet Conjecture) for any natural number using the Sum of four squares.
This calculator has 1 input.

What 1 formula is used for the Lagrange Four Square Theorem (Bachet Conjecture) Calculator?

p = a2 + b2 + c2 + d2

For more math formulas, check out our Formula Dossier

What 7 concepts are covered in the Lagrange Four Square Theorem (Bachet Conjecture) Calculator?

algorithm
A process to solve a problem in a set amount of time
floor
the greatest integer that is less than or equal to x
integer
a whole number; a number that is not a fraction
...,-5,-4,-3,-2,-1,0,1,2,3,4,5,...
lagrange theorem
in group theory, for any finite group say G, the order of subgroup H of group G divides the order of G
p = a2 + b2 + c2 + d2
maximum
the greatest or highest amount possible or attained
minimum
the least or lowest amount possible or attained
natural number
the positive integers (whole numbers)
1, 2, 3, ...
Example calculations for the Lagrange Four Square Theorem (Bachet Conjecture) Calculator
Lagrange Four Square Theorem (Bachet Conjecture) Calculator Video

Tags:



Add This Calculator To Your Website