Show the Lagrange Four Square Theorem for
300
For any natural number (p), we write as
p = a2 + b2 + c2 + d2
Floor(√300) = Floor(17.320508075689)
Floor(17.320508075689) = 17
This is called max_a
Find the first value of a such that
a2 ≥ n/4
Start with min_a = 1 and increase by 1
Continue until we reach or breach n/4 → 300/4 = 75
When min_a = 9, then it is a2 = 81 ≥ 75, so min_a = 9
(9, 17)
Find max_b which is Floor(√n - a2)
max_b = Floor(√300 - 92)
max_b = Floor(√300 - 81)
max_b = Floor(√219)
max_b = Floor(14.798648586949)
max_b = 14
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 92)/3 = 73
When min_b = 9, then it is b2 = 81 ≥ 73, so min_b = 9
(9, 14)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 92 - 92)
max_c = Floor(√300 - 81 - 81)
max_c = Floor(√138)
max_c = Floor(11.747340124471)
max_c = 11
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 92 - 92)/2 = 69
When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 92 - 92
max_d = √300 - 81 - 81 - 81
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 92 - 102
max_d = √300 - 81 - 81 - 100
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 92 - 112
max_d = √300 - 81 - 81 - 121
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 92 - 102)
max_c = Floor(√300 - 81 - 100)
max_c = Floor(√119)
max_c = Floor(10.908712114636)
max_c = 10
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 92 - 102)/2 = 59.5
When min_c = 8, then it is c2 = 64 ≥ 59.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 102 - 82
max_d = √300 - 81 - 100 - 64
max_d = √55
max_d = 7.4161984870957
Since max_d = 7.4161984870957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 102 - 92
max_d = √300 - 81 - 100 - 81
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 102 - 102
max_d = √300 - 81 - 100 - 100
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 92 - 112)
max_c = Floor(√300 - 81 - 121)
max_c = Floor(√98)
max_c = Floor(9.8994949366117)
max_c = 9
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 92 - 112)/2 = 49
When min_c = 7, then it is c2 = 49 ≥ 49, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 112 - 72
max_d = √300 - 81 - 121 - 49
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (9, 11, 7, 7) is an integer solution proven below
92 + 112 + 72 + 72 → 81 + 121 + 49 + 49 = 300
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 112 - 82
max_d = √300 - 81 - 121 - 64
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 112 - 92
max_d = √300 - 81 - 121 - 81
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 92 - 122)
max_c = Floor(√300 - 81 - 144)
max_c = Floor(√75)
max_c = Floor(8.6602540378444)
max_c = 8
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 92 - 122)/2 = 37.5
When min_c = 7, then it is c2 = 49 ≥ 37.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 122 - 72
max_d = √300 - 81 - 144 - 49
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 122 - 82
max_d = √300 - 81 - 144 - 64
max_d = √11
max_d = 3.3166247903554
Since max_d = 3.3166247903554 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 92 - 132)
max_c = Floor(√300 - 81 - 169)
max_c = Floor(√50)
max_c = Floor(7.0710678118655)
max_c = 7
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 92 - 132)/2 = 25
When min_c = 5, then it is c2 = 25 ≥ 25, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 132 - 52
max_d = √300 - 81 - 169 - 25
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (9, 13, 5, 5) is an integer solution proven below
92 + 132 + 52 + 52 → 81 + 169 + 25 + 25 = 300
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 132 - 62
max_d = √300 - 81 - 169 - 36
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 132 - 72
max_d = √300 - 81 - 169 - 49
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (9, 13, 7, 1) is an integer solution proven below
92 + 132 + 72 + 12 → 81 + 169 + 49 + 1 = 300
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 92 - 142)
max_c = Floor(√300 - 81 - 196)
max_c = Floor(√23)
max_c = Floor(4.7958315233127)
max_c = 4
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 92 - 142)/2 = 11.5
When min_c = 4, then it is c2 = 16 ≥ 11.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 92 - 142 - 42
max_d = √300 - 81 - 196 - 16
max_d = √7
max_d = 2.6457513110646
Since max_d = 2.6457513110646 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√300 - 102)
max_b = Floor(√300 - 100)
max_b = Floor(√200)
max_b = Floor(14.142135623731)
max_b = 14
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 102)/3 = 66.666666666667
When min_b = 9, then it is b2 = 81 ≥ 66.666666666667, so min_b = 9
(9, 14)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 102 - 92)
max_c = Floor(√300 - 100 - 81)
max_c = Floor(√119)
max_c = Floor(10.908712114636)
max_c = 10
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 102 - 92)/2 = 59.5
When min_c = 8, then it is c2 = 64 ≥ 59.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 102 - 92 - 82
max_d = √300 - 100 - 81 - 64
max_d = √55
max_d = 7.4161984870957
Since max_d = 7.4161984870957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 102 - 92 - 92
max_d = √300 - 100 - 81 - 81
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 102 - 92 - 102
max_d = √300 - 100 - 81 - 100
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 102 - 102)
max_c = Floor(√300 - 100 - 100)
max_c = Floor(√100)
max_c = Floor(10)
max_c = 10
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 102 - 102)/2 = 50
When min_c = 8, then it is c2 = 64 ≥ 50, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 102 - 102 - 82
max_d = √300 - 100 - 100 - 64
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (10, 10, 8, 6) is an integer solution proven below
102 + 102 + 82 + 62 → 100 + 100 + 64 + 36 = 300
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 102 - 102 - 92
max_d = √300 - 100 - 100 - 81
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 102 - 102 - 102
max_d = √300 - 100 - 100 - 100
max_d = √0
max_d = 0
Since max_d = 0, then (a, b, c, d) = (10, 10, 10, 0) is an integer solution proven below
102 + 102 + 102 + 02 → 100 + 100 + 100 + 0 = 300
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 102 - 112)
max_c = Floor(√300 - 100 - 121)
max_c = Floor(√79)
max_c = Floor(8.8881944173156)
max_c = 8
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 102 - 112)/2 = 39.5
When min_c = 7, then it is c2 = 49 ≥ 39.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 102 - 112 - 72
max_d = √300 - 100 - 121 - 49
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 102 - 112 - 82
max_d = √300 - 100 - 121 - 64
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 102 - 122)
max_c = Floor(√300 - 100 - 144)
max_c = Floor(√56)
max_c = Floor(7.4833147735479)
max_c = 7
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 102 - 122)/2 = 28
When min_c = 6, then it is c2 = 36 ≥ 28, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 102 - 122 - 62
max_d = √300 - 100 - 144 - 36
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 102 - 122 - 72
max_d = √300 - 100 - 144 - 49
max_d = √7
max_d = 2.6457513110646
Since max_d = 2.6457513110646 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 102 - 132)
max_c = Floor(√300 - 100 - 169)
max_c = Floor(√31)
max_c = Floor(5.56776436283)
max_c = 5
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 102 - 132)/2 = 15.5
When min_c = 4, then it is c2 = 16 ≥ 15.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 102 - 132 - 42
max_d = √300 - 100 - 169 - 16
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 102 - 132 - 52
max_d = √300 - 100 - 169 - 25
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 102 - 142)
max_c = Floor(√300 - 100 - 196)
max_c = Floor(√4)
max_c = Floor(2)
max_c = 2
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 102 - 142)/2 = 2
When min_c = 2, then it is c2 = 4 ≥ 2, so min_c = 2
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 102 - 142 - 22
max_d = √300 - 100 - 196 - 4
max_d = √0
max_d = 0
Since max_d = 0, then (a, b, c, d) = (10, 14, 2, 0) is an integer solution proven below
102 + 142 + 22 + 02 → 100 + 196 + 4 + 0 = 300
Find max_b which is Floor(√n - a2)
max_b = Floor(√300 - 112)
max_b = Floor(√300 - 121)
max_b = Floor(√179)
max_b = Floor(13.37908816026)
max_b = 13
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 112)/3 = 59.666666666667
When min_b = 8, then it is b2 = 64 ≥ 59.666666666667, so min_b = 8
(8, 13)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 112 - 82)
max_c = Floor(√300 - 121 - 64)
max_c = Floor(√115)
max_c = Floor(10.723805294764)
max_c = 10
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 112 - 82)/2 = 57.5
When min_c = 8, then it is c2 = 64 ≥ 57.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 112 - 82 - 82
max_d = √300 - 121 - 64 - 64
max_d = √51
max_d = 7.1414284285429
Since max_d = 7.1414284285429 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 112 - 82 - 92
max_d = √300 - 121 - 64 - 81
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 112 - 82 - 102
max_d = √300 - 121 - 64 - 100
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 112 - 92)
max_c = Floor(√300 - 121 - 81)
max_c = Floor(√98)
max_c = Floor(9.8994949366117)
max_c = 9
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 112 - 92)/2 = 49
When min_c = 7, then it is c2 = 49 ≥ 49, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 112 - 92 - 72
max_d = √300 - 121 - 81 - 49
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (11, 9, 7, 7) is an integer solution proven below
112 + 92 + 72 + 72 → 121 + 81 + 49 + 49 = 300
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 112 - 92 - 82
max_d = √300 - 121 - 81 - 64
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 112 - 92 - 92
max_d = √300 - 121 - 81 - 81
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 112 - 102)
max_c = Floor(√300 - 121 - 100)
max_c = Floor(√79)
max_c = Floor(8.8881944173156)
max_c = 8
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 112 - 102)/2 = 39.5
When min_c = 7, then it is c2 = 49 ≥ 39.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 112 - 102 - 72
max_d = √300 - 121 - 100 - 49
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 112 - 102 - 82
max_d = √300 - 121 - 100 - 64
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 112 - 112)
max_c = Floor(√300 - 121 - 121)
max_c = Floor(√58)
max_c = Floor(7.6157731058639)
max_c = 7
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 112 - 112)/2 = 29
When min_c = 6, then it is c2 = 36 ≥ 29, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 112 - 112 - 62
max_d = √300 - 121 - 121 - 36
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 112 - 112 - 72
max_d = √300 - 121 - 121 - 49
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (11, 11, 7, 3) is an integer solution proven below
112 + 112 + 72 + 32 → 121 + 121 + 49 + 9 = 300
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 112 - 122)
max_c = Floor(√300 - 121 - 144)
max_c = Floor(√35)
max_c = Floor(5.9160797830996)
max_c = 5
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 112 - 122)/2 = 17.5
When min_c = 5, then it is c2 = 25 ≥ 17.5, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 112 - 122 - 52
max_d = √300 - 121 - 144 - 25
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 112 - 132)
max_c = Floor(√300 - 121 - 169)
max_c = Floor(√10)
max_c = Floor(3.1622776601684)
max_c = 3
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 112 - 132)/2 = 5
When min_c = 3, then it is c2 = 9 ≥ 5, so min_c = 3
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 112 - 132 - 32
max_d = √300 - 121 - 169 - 9
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (11, 13, 3, 1) is an integer solution proven below
112 + 132 + 32 + 12 → 121 + 169 + 9 + 1 = 300
Find max_b which is Floor(√n - a2)
max_b = Floor(√300 - 122)
max_b = Floor(√300 - 144)
max_b = Floor(√156)
max_b = Floor(12.489995996797)
max_b = 12
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 122)/3 = 52
When min_b = 8, then it is b2 = 64 ≥ 52, so min_b = 8
(8, 12)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 122 - 82)
max_c = Floor(√300 - 144 - 64)
max_c = Floor(√92)
max_c = Floor(9.5916630466254)
max_c = 9
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 122 - 82)/2 = 46
When min_c = 7, then it is c2 = 49 ≥ 46, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 122 - 82 - 72
max_d = √300 - 144 - 64 - 49
max_d = √43
max_d = 6.557438524302
Since max_d = 6.557438524302 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 122 - 82 - 82
max_d = √300 - 144 - 64 - 64
max_d = √28
max_d = 5.2915026221292
Since max_d = 5.2915026221292 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 122 - 82 - 92
max_d = √300 - 144 - 64 - 81
max_d = √11
max_d = 3.3166247903554
Since max_d = 3.3166247903554 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 122 - 92)
max_c = Floor(√300 - 144 - 81)
max_c = Floor(√75)
max_c = Floor(8.6602540378444)
max_c = 8
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 122 - 92)/2 = 37.5
When min_c = 7, then it is c2 = 49 ≥ 37.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 122 - 92 - 72
max_d = √300 - 144 - 81 - 49
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 122 - 92 - 82
max_d = √300 - 144 - 81 - 64
max_d = √11
max_d = 3.3166247903554
Since max_d = 3.3166247903554 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 122 - 102)
max_c = Floor(√300 - 144 - 100)
max_c = Floor(√56)
max_c = Floor(7.4833147735479)
max_c = 7
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 122 - 102)/2 = 28
When min_c = 6, then it is c2 = 36 ≥ 28, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 122 - 102 - 62
max_d = √300 - 144 - 100 - 36
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 122 - 102 - 72
max_d = √300 - 144 - 100 - 49
max_d = √7
max_d = 2.6457513110646
Since max_d = 2.6457513110646 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 122 - 112)
max_c = Floor(√300 - 144 - 121)
max_c = Floor(√35)
max_c = Floor(5.9160797830996)
max_c = 5
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 122 - 112)/2 = 17.5
When min_c = 5, then it is c2 = 25 ≥ 17.5, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 122 - 112 - 52
max_d = √300 - 144 - 121 - 25
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 122 - 122)
max_c = Floor(√300 - 144 - 144)
max_c = Floor(√12)
max_c = Floor(3.4641016151378)
max_c = 3
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 122 - 122)/2 = 6
When min_c = 3, then it is c2 = 9 ≥ 6, so min_c = 3
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 122 - 122 - 32
max_d = √300 - 144 - 144 - 9
max_d = √3
max_d = 1.7320508075689
Since max_d = 1.7320508075689 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√300 - 132)
max_b = Floor(√300 - 169)
max_b = Floor(√131)
max_b = Floor(11.44552314226)
max_b = 11
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 132)/3 = 43.666666666667
When min_b = 7, then it is b2 = 49 ≥ 43.666666666667, so min_b = 7
(7, 11)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 132 - 72)
max_c = Floor(√300 - 169 - 49)
max_c = Floor(√82)
max_c = Floor(9.0553851381374)
max_c = 9
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 132 - 72)/2 = 41
When min_c = 7, then it is c2 = 49 ≥ 41, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 132 - 72 - 72
max_d = √300 - 169 - 49 - 49
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 132 - 72 - 82
max_d = √300 - 169 - 49 - 64
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 132 - 72 - 92
max_d = √300 - 169 - 49 - 81
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (13, 7, 9, 1) is an integer solution proven below
132 + 72 + 92 + 12 → 169 + 49 + 81 + 1 = 300
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 132 - 82)
max_c = Floor(√300 - 169 - 64)
max_c = Floor(√67)
max_c = Floor(8.1853527718725)
max_c = 8
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 132 - 82)/2 = 33.5
When min_c = 6, then it is c2 = 36 ≥ 33.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 132 - 82 - 62
max_d = √300 - 169 - 64 - 36
max_d = √31
max_d = 5.56776436283
Since max_d = 5.56776436283 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 132 - 82 - 72
max_d = √300 - 169 - 64 - 49
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 132 - 82 - 82
max_d = √300 - 169 - 64 - 64
max_d = √3
max_d = 1.7320508075689
Since max_d = 1.7320508075689 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 132 - 92)
max_c = Floor(√300 - 169 - 81)
max_c = Floor(√50)
max_c = Floor(7.0710678118655)
max_c = 7
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 132 - 92)/2 = 25
When min_c = 5, then it is c2 = 25 ≥ 25, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 132 - 92 - 52
max_d = √300 - 169 - 81 - 25
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (13, 9, 5, 5) is an integer solution proven below
132 + 92 + 52 + 52 → 169 + 81 + 25 + 25 = 300
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 132 - 92 - 62
max_d = √300 - 169 - 81 - 36
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 132 - 92 - 72
max_d = √300 - 169 - 81 - 49
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (13, 9, 7, 1) is an integer solution proven below
132 + 92 + 72 + 12 → 169 + 81 + 49 + 1 = 300
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 132 - 102)
max_c = Floor(√300 - 169 - 100)
max_c = Floor(√31)
max_c = Floor(5.56776436283)
max_c = 5
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 132 - 102)/2 = 15.5
When min_c = 4, then it is c2 = 16 ≥ 15.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 132 - 102 - 42
max_d = √300 - 169 - 100 - 16
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 132 - 102 - 52
max_d = √300 - 169 - 100 - 25
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 132 - 112)
max_c = Floor(√300 - 169 - 121)
max_c = Floor(√10)
max_c = Floor(3.1622776601684)
max_c = 3
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 132 - 112)/2 = 5
When min_c = 3, then it is c2 = 9 ≥ 5, so min_c = 3
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 132 - 112 - 32
max_d = √300 - 169 - 121 - 9
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (13, 11, 3, 1) is an integer solution proven below
132 + 112 + 32 + 12 → 169 + 121 + 9 + 1 = 300
Find max_b which is Floor(√n - a2)
max_b = Floor(√300 - 142)
max_b = Floor(√300 - 196)
max_b = Floor(√104)
max_b = Floor(10.198039027186)
max_b = 10
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 142)/3 = 34.666666666667
When min_b = 6, then it is b2 = 36 ≥ 34.666666666667, so min_b = 6
(6, 10)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 142 - 62)
max_c = Floor(√300 - 196 - 36)
max_c = Floor(√68)
max_c = Floor(8.2462112512353)
max_c = 8
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 142 - 62)/2 = 34
When min_c = 6, then it is c2 = 36 ≥ 34, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 142 - 62 - 62
max_d = √300 - 196 - 36 - 36
max_d = √32
max_d = 5.6568542494924
Since max_d = 5.6568542494924 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 142 - 62 - 72
max_d = √300 - 196 - 36 - 49
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 142 - 62 - 82
max_d = √300 - 196 - 36 - 64
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (14, 6, 8, 2) is an integer solution proven below
142 + 62 + 82 + 22 → 196 + 36 + 64 + 4 = 300
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 142 - 72)
max_c = Floor(√300 - 196 - 49)
max_c = Floor(√55)
max_c = Floor(7.4161984870957)
max_c = 7
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 142 - 72)/2 = 27.5
When min_c = 6, then it is c2 = 36 ≥ 27.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 142 - 72 - 62
max_d = √300 - 196 - 49 - 36
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 142 - 72 - 72
max_d = √300 - 196 - 49 - 49
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 142 - 82)
max_c = Floor(√300 - 196 - 64)
max_c = Floor(√40)
max_c = Floor(6.3245553203368)
max_c = 6
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 142 - 82)/2 = 20
When min_c = 5, then it is c2 = 25 ≥ 20, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 142 - 82 - 52
max_d = √300 - 196 - 64 - 25
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 142 - 82 - 62
max_d = √300 - 196 - 64 - 36
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (14, 8, 6, 2) is an integer solution proven below
142 + 82 + 62 + 22 → 196 + 64 + 36 + 4 = 300
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 142 - 92)
max_c = Floor(√300 - 196 - 81)
max_c = Floor(√23)
max_c = Floor(4.7958315233127)
max_c = 4
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 142 - 92)/2 = 11.5
When min_c = 4, then it is c2 = 16 ≥ 11.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 142 - 92 - 42
max_d = √300 - 196 - 81 - 16
max_d = √7
max_d = 2.6457513110646
Since max_d = 2.6457513110646 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 142 - 102)
max_c = Floor(√300 - 196 - 100)
max_c = Floor(√4)
max_c = Floor(2)
max_c = 2
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 142 - 102)/2 = 2
When min_c = 2, then it is c2 = 4 ≥ 2, so min_c = 2
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 142 - 102 - 22
max_d = √300 - 196 - 100 - 4
max_d = √0
max_d = 0
Since max_d = 0, then (a, b, c, d) = (14, 10, 2, 0) is an integer solution proven below
142 + 102 + 22 + 02 → 196 + 100 + 4 + 0 = 300
Find max_b which is Floor(√n - a2)
max_b = Floor(√300 - 152)
max_b = Floor(√300 - 225)
max_b = Floor(√75)
max_b = Floor(8.6602540378444)
max_b = 8
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 152)/3 = 25
When min_b = 5, then it is b2 = 25 ≥ 25, so min_b = 5
(5, 8)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 152 - 52)
max_c = Floor(√300 - 225 - 25)
max_c = Floor(√50)
max_c = Floor(7.0710678118655)
max_c = 7
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 152 - 52)/2 = 25
When min_c = 5, then it is c2 = 25 ≥ 25, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 152 - 52 - 52
max_d = √300 - 225 - 25 - 25
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (15, 5, 5, 5) is an integer solution proven below
152 + 52 + 52 + 52 → 225 + 25 + 25 + 25 = 300
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 152 - 52 - 62
max_d = √300 - 225 - 25 - 36
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 152 - 52 - 72
max_d = √300 - 225 - 25 - 49
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (15, 5, 7, 1) is an integer solution proven below
152 + 52 + 72 + 12 → 225 + 25 + 49 + 1 = 300
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 152 - 62)
max_c = Floor(√300 - 225 - 36)
max_c = Floor(√39)
max_c = Floor(6.2449979983984)
max_c = 6
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 152 - 62)/2 = 19.5
When min_c = 5, then it is c2 = 25 ≥ 19.5, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 152 - 62 - 52
max_d = √300 - 225 - 36 - 25
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 152 - 62 - 62
max_d = √300 - 225 - 36 - 36
max_d = √3
max_d = 1.7320508075689
Since max_d = 1.7320508075689 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 152 - 72)
max_c = Floor(√300 - 225 - 49)
max_c = Floor(√26)
max_c = Floor(5.0990195135928)
max_c = 5
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 152 - 72)/2 = 13
When min_c = 4, then it is c2 = 16 ≥ 13, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 152 - 72 - 42
max_d = √300 - 225 - 49 - 16
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 152 - 72 - 52
max_d = √300 - 225 - 49 - 25
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (15, 7, 5, 1) is an integer solution proven below
152 + 72 + 52 + 12 → 225 + 49 + 25 + 1 = 300
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 152 - 82)
max_c = Floor(√300 - 225 - 64)
max_c = Floor(√11)
max_c = Floor(3.3166247903554)
max_c = 3
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 152 - 82)/2 = 5.5
When min_c = 3, then it is c2 = 9 ≥ 5.5, so min_c = 3
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 152 - 82 - 32
max_d = √300 - 225 - 64 - 9
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√300 - 162)
max_b = Floor(√300 - 256)
max_b = Floor(√44)
max_b = Floor(6.6332495807108)
max_b = 6
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 162)/3 = 14.666666666667
When min_b = 4, then it is b2 = 16 ≥ 14.666666666667, so min_b = 4
(4, 6)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 162 - 42)
max_c = Floor(√300 - 256 - 16)
max_c = Floor(√28)
max_c = Floor(5.2915026221292)
max_c = 5
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 162 - 42)/2 = 14
When min_c = 4, then it is c2 = 16 ≥ 14, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 162 - 42 - 42
max_d = √300 - 256 - 16 - 16
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 162 - 42 - 52
max_d = √300 - 256 - 16 - 25
max_d = √3
max_d = 1.7320508075689
Since max_d = 1.7320508075689 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 162 - 52)
max_c = Floor(√300 - 256 - 25)
max_c = Floor(√19)
max_c = Floor(4.3588989435407)
max_c = 4
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 162 - 52)/2 = 9.5
When min_c = 4, then it is c2 = 16 ≥ 9.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 162 - 52 - 42
max_d = √300 - 256 - 25 - 16
max_d = √3
max_d = 1.7320508075689
Since max_d = 1.7320508075689 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 162 - 62)
max_c = Floor(√300 - 256 - 36)
max_c = Floor(√8)
max_c = Floor(2.8284271247462)
max_c = 2
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 162 - 62)/2 = 4
When min_c = 2, then it is c2 = 4 ≥ 4, so min_c = 2
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 162 - 62 - 22
max_d = √300 - 256 - 36 - 4
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (16, 6, 2, 2) is an integer solution proven below
162 + 62 + 22 + 22 → 256 + 36 + 4 + 4 = 300
Find max_b which is Floor(√n - a2)
max_b = Floor(√300 - 172)
max_b = Floor(√300 - 289)
max_b = Floor(√11)
max_b = Floor(3.3166247903554)
max_b = 3
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 1 and increase by 1
Go until (n - a2)/3 → (300 - 172)/3 = 3.6666666666667
When min_b = 2, then it is b2 = 4 ≥ 3.6666666666667, so min_b = 2
(2, 3)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 172 - 22)
max_c = Floor(√300 - 289 - 4)
max_c = Floor(√7)
max_c = Floor(2.6457513110646)
max_c = 2
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 172 - 22)/2 = 3.5
When min_c = 2, then it is c2 = 4 ≥ 3.5, so min_c = 2
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 172 - 22 - 22
max_d = √300 - 289 - 4 - 4
max_d = √3
max_d = 1.7320508075689
Since max_d = 1.7320508075689 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√300 - 172 - 32)
max_c = Floor(√300 - 289 - 9)
max_c = Floor(√2)
max_c = Floor(1.4142135623731)
max_c = 1
Call it min_b
Start with min_c = 1 and increase by 1
Go until (n - a2 - b2 )/2 → (300 - 172 - 32)/2 = 1
When min_c = 1, then it is c2 = 1 ≥ 1, so min_c = 1
See if d is an integer solution which is √n - a2 - b2
max_d = √300 - 172 - 32 - 12
max_d = √300 - 289 - 9 - 1
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (17, 3, 1, 1) is an integer solution proven below
172 + 32 + 12 + 12 → 289 + 9 + 1 + 1 = 300