Given S = 225, calculate:√
225 using the Newtons Method
Build Newtons Method
The square root of a number can be represented
ƒ(x) = x
2 - S
Take the Derivative of this
ƒ'(x) = 2x
Since the square root > 0, start with x
0 = 1
Calculate x
1x
1 = x
0 + (ƒ(x
0) - S)/ƒ'(x
0)
x
1 = 1 + (1
2 - 225)/2(1)
x
1 = 1 + (1 - 225)/2
x
1 =1 + -224/2
x
1 = 1 + -112
x
1 = 113
Calculate x
2x
2 = x
1 + (ƒ(x
1) - S)/ƒ'(x
1)
x
2 = 113 + (113
2 - 225)/2(113)
x
2 = 113 + (12769 - 225)/226
x
2 =113 + 12544/226
x
2 = 113 + 55.504424778761
x
2 = 57.495575221239
Calculate x
3x
3 = x
2 + (ƒ(x
2) - S)/ƒ'(x
2)
x
3 = 57.495575221239 + (57.495575221239
2 - 225)/2(57.495575221239)
x
3 = 57.495575221239 + (3305.7411700211 - 225)/114.99115044248
x
3 =57.495575221239 + 3080.7411700211/114.99115044248
x
3 = 57.495575221239 + 26.791115300322
x
3 = 30.704459920917
Calculate x
4x
4 = x
3 + (ƒ(x
3) - S)/ƒ'(x
3)
x
4 = 30.704459920917 + (30.704459920917
2 - 225)/2(30.704459920917)
x
4 = 30.704459920917 + (942.76385903517 - 225)/61.408919841833
x
4 =30.704459920917 + 717.76385903517/61.408919841833
x
4 = 30.704459920917 + 11.688267126077
x
4 = 19.01619279484
Calculate x
5x
5 = x
4 + (ƒ(x
4) - S)/ƒ'(x
4)
x
5 = 19.01619279484 + (19.01619279484
2 - 225)/2(19.01619279484)
x
5 = 19.01619279484 + (361.61558841052 - 225)/38.03238558968
x
5 =19.01619279484 + 136.61558841052/38.03238558968
x
5 = 19.01619279484 + 3.5920856999197
x
5 = 15.42410709492
Calculate x
6x
6 = x
5 + (ƒ(x
5) - S)/ƒ'(x
5)
x
6 = 15.42410709492 + (15.42410709492
2 - 225)/2(15.42410709492)
x
6 = 15.42410709492 + (237.90307967557 - 225)/30.84821418984
x
6 =15.42410709492 + 12.903079675568/30.84821418984
x
6 = 15.42410709492 + 0.41827639020405
x
6 = 15.005830704716
Calculate x
7x
7 = x
6 + (ƒ(x
6) - S)/ƒ'(x
6)
x
7 = 15.005830704716 + (15.005830704716
2 - 225)/2(15.005830704716)
x
7 = 15.005830704716 + (225.1749551386 - 225)/30.011661409432
x
7 =15.005830704716 + 0.17495513860214/30.011661409432
x
7 = 15.005830704716 + 0.0058295719192393
x
7 = 15.000001132797
x7 = 15.000001132797
You have 2 free calculationss remaining
How does the Newton Method Calculator work?
Free Newton Method Calculator - Calculates the square root of a positive integer using the Newton Method
This calculator has 1 input.
What 3 formulas are used for the Newton Method Calculator?
ƒ(x) = x
2 - S
ƒ'(x) = 2x
x
n = x
n - 1 + (ƒ(x
n - 1) - S)/ƒ'(x
n - 1)
For more math formulas, check out our
Formula Dossier
What 3 concepts are covered in the Newton Method Calculator?
- algorithm
- A process to solve a problem in a set amount of time
- newtons method
- another numerical method for solving an equation f...
- square root
- a factor of a number that, when multiplied by itself, gives the original number
√x
Example calculations for the Newton Method Calculator
Tags:
Add This Calculator To Your Website